

OlaPy - OLAP Engine

OlaPy is an OLAP engine based on Python, which gives you a set of tools for the development of reporting and analytical applications, multidimensional analysis, and browsing of aggregated data with MDX [https://en.wikipedia.org/wiki/MultiDimensional_eXpressions] and XMLA [https://en.wikipedia.org/wiki/XML_for_Analysis] support.
It can be found in
GitHub [https://github.com/abilian/olapy]. or PyPI [https://pypi.python.org/pypi/olapy].

	It is fast and uses in-memory technology and various techniques (aggregation and real-time computation) to provide sub-second responses.

	It includes an ETL layer (Extract Transform Load) for better data handling.

	It support most common databases (Postgres, MySql, Oracle, SQL Server) and CSV file format (only CSV right now) to construct cubes.

Contents:

	Installation
	Install from PyPI

	Install from Github

	Initialization

	Olapy-data

	Quick Start
	OlaPy as XMLA server

	Olapy as a library

	Advanced Olapy options

	Cubes creation
	OLAPY CUBES RULES

	Examples:

	Cube customization

	Running olapy with Database
	Environnement variable

	Database string connection

	Olapy config file

	OlaPy ETL

	API Documentation
	Package olapy.core.services.xmla

	Package olapy.core.mdx.executor

	Package olapy.etl.etl

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install from PyPI

You can install it directly from the Python Package Index [https://pypi.python.org/pypi/olapy]:

pip install olapy

Install from Github

The project sources are stored in Github repository [https://github.com/abilian/olapy].

Download from GitHub:

git clone git://github.com/abilian/olapy.git

Then install:

cd olapy
python setup.py install

Initialization

Before running olapy, you have to initialize it with:

olapy init

Testing

OlaPy is configured to run units and integrations tests suites. Before running tests, make sure you have installed all development requirements with:

pip install -r dev-requirements.txt

and then run:

tox

Test other databases

The default database used with tests is sqlite, if you want to run tests against mysql or postgres, you need to install the appropriate driver and export a connection string like this

export SQLALCHEMY_DATABASE_URI = { dialect+driver://username:password@host:port/database }

take a look to SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html] for more information.

Olapy-data

After Olapy initialization, you can take a look to olapy-data folder located under:

~/olapy-data for Linux/Mac user

C:\User\{USER_NAME}\olapy-data for Windows

This folder contains some required files to configure olapy and some demo cubes under /cubes folder, we will deeply discuss about this in the Cubes and Cube Customization

Quick Start

OlaPy as XMLA server

After installation, you can run the Olapy server with:

olapy runserver

All you have to do now is to try it with an Excel spreadsheet:

open excel, open new spreadsheet and go to : Data -> From Other Sources -> From Analysis Services

[image: _images/excel.png]

After that, Excel will ask you the server name: put http://127.0.0.1:8000/ and click next, then you can chose one of default olapy demo cubes (sales, foodmart…) and finish.

That’s it! Now you can play with your data.

Olapy as a library

If you want to use olapy as a library to execute MDX queries, start by importing the MDX engine:

from olapy.core.mdx.executor import MdxEngine

In our example, we’re going to use sales demo cube:

executor = MdxEngine() # instantiate the MdxEngine
executor.load_cube('sales') # load sales cube

We set an MDX query:

query = """
SELECT
Hierarchize({[Measures].[Amount]}) ON COLUMNS
FROM [sales]
"""

and execute it:

df = executor.execute_mdx(query)['result']
print(df)

Result:

	
	Amount

	0

	1023

Advanced Olapy options

Olapy is easy configurable. When using the olapy runserver command, you can pass a lot of options to it:

-st Cubes source type (db|csv), DEFAULT : csv only
-sa SQL Alchemy URI to connect to database , **DON'T PUT THE DATABASE NAME !**
-wf Write logs into a file or display them into the console. log file location,
 by default under olapy-data folder
-lf If you want to change log file location.
-od Olapy-Data folder location
-h Host ip adresse
-p Host port
-dbc Database configuration file path, Default : ~/olapy-data/olapy-config.yml
-cbf Cube config file path, default : ~/olapy-data/cube/cubes-config.yml

-tf File path or DB table name if you want to construct cube from a single file (or table)
-c To explicitly specify columns (construct cube from a single file), columns order matters
-m To explicitly specify measures (construct cube from a single file)

Here is an example of olapy runserver with all options:

olapy runserver -sa=postgresql://postgres:root@localhost:5432
 -wf=False
 -lf=/home/{USER_NAME}/Documents/olapy_logs
 -od=/home/{USER_NAME}/Documents
 -st=db,csv
 -h=0.0.0.0
 -p=8000

Here is an example of olapy runserver with a simple csv file:

olapy runserver -tf=/home/moddoy/olapy-data/cubes/sales/Data.csv
 -c=City,Licence
 -m=Amount,Count

Cubes creation

To add new cube, put your CSV files in a folder (folder name <=> cube name),
make sure that they follow OLAPY CUBES RULES,
and move that folder under olapy-data/cubes,
thus, the path to your cube will be:

	~/olapy-data/cubes/{YOUR_CUBE}/{YOU_CSV_FILES} for Mac/Linux,

	C:\\User\\{USER_NAME}\\olapy-data\\{YOUR_CUBE}\\{YOU_CSV_FILES} for Windows.

OLAPY CUBES RULES

NOTE : THE SAME THING IF YOU WANT TO WORK WITH DATABASES

Here are the rules to apply to your tables so that can works perfectly with olapy:

	Make sure that your tables follow the star schema [http://datawarehouse4u.info/Data-warehouse-schema-architecture-star-schema.html]

	The fact table should be named ‘Facts’

	Each table id columns, must be the same in facts table, example (product_id column from product table must be product_id in Facts table,

	Avoid ‘id’ for id columns name, you should use something_id for example

	The columns name must be in a good order (hierarchy) (example : Continent -> Country -> City…)

take a look to the default cubes structure (sales and foodmart).

Here are two examples of table structures that follows olapy rules:

Examples:

Cube 1

Geography table

	Geo_id

	Continent

	Country

	0001

	America

	Canada

	…

	00526

	Europe

	France

Facts table

	Geo_id

	Prod_id

	Amount

	Count

	0001

	111111

	5000

	20

	…

	0011

	222222

	1000

	40

Product table

	Prod_id

	Company

	Name

	111111

	Ferrero

	Nutella

	…

	222222

	Nestle

	KitKat

Cube 2

Here we don’t use id column name in tables.

Geography table

	Continent

	Country

	America

	Canada

	…

	Europe

	France

Facts table

	Continent

	Company

	Amount

	Count

	America

	Ferrero

	5000

	20

	…

	Europe

	Nestle

	1000

	40

Product table

	Company

	Name

	Ferrero

	Nutella

	…

	Nestle

	KitKat

Cube customization

If you don’t want to follow olapy cubes rules and you want to customize your cube construction, you can use a configuration file, you can find the default example in

~/olapy-data/cubes/cubes-config.xml for mac/linux

C:\\User\\{USER_NAME}\\olapy-data\\cubes\\cubes-config.xml for windows

Here is an examples of configuration:

Assuming we have two tables as follows under ‘custom_cube’ folder

table 1: stats (which is the facts table)

	departement_id

	amount

	monthly_salary

	total monthly cost

	111

	1000

	2000

	3000

	…

	
	
	

table 2: organization (which is a dimension)

	id

	type

	name

	acronym

	other colums…..

	111

	humanitarian

	humania

	for better life

	

	…

	…

	
	
	

you can use a configuration file like this to construct cube and access to it with excel:

if you want to set an authentication mechanism to access cube,
user must set a token with login url like 'http://127.0.0.1/admin
default password = admin
xmla_authentication : False

cube name <==> db name
name : custom_cube
#csv | postgres | mysql ...
source : csv

star building customized star schema
facts :
 table_name : stats
 keys:
 departement_id : organization.id

 measures :
 # by default, all number type columns in facts table, or you can specify them here
 - amount
 - monthly_salary

star building customized dimensions display in excel from the star schema
dimensions:
 # IMPORTANT , put here facts table also
 - name : stats
 displayName : stats

 - name : organization
 displayName : Organization
 columns :
 - name : id
 - name : type
 - name : name
 column_new_name : full_name

Running olapy with Database

As we said in the previous section, Olapy uses CSV files as source type by default when using the olapy runserver command, so how can we work with databases ? Well, you need to provide some database information (login, password, etc…) to Olapy so it can connect to your database management system.

The command to run Olapy with databases is

olapy runserver -st=csv,db

Here, Olapy gets cubes from csv and database (of course if you want only database use -st=db …)

You have three possibilities to configure olapy with database:

Environnement variable

At startup, Olapy looks for an environment variable called SQLALCHEMY_DATABASE_URI which is the connection string that holds your database credentials and its something like:

SQLALCHEMY_DATABASE_URI = mysql://root:root@localhost:3306

To use this method, just before starting Olapy with olapy runserver, use the following command:

export SQLALCHEMY_DATABASE_URI = mysql://root:root@localhost:3306 for mac/linux

set SQLALCHEMY_DATABASE_URI = mysql://root:root@localhost:3306 for windows

and then start Olapy with the option -st=csv,db of course.

NOTE don’t put the database name in the connection string, you will select the database after from Excel.

SQLALCHEMY_DATABASE_URI = mysql://root:root@localhost:3306/my_database -> this will not work

Database string connection

This is simple as running Olapy with the -sa option:

olapy runserver -st=csv,db -sa=mysql://root:root@localhost:3306

and the same rule don’t put the database name.

Olapy config file

The third way to configure a database connection is using a file configuration named olapy-config.yml under olapy-data folder. A default/demo olapy-config file is created after installing olapy under olapy-data.

You can modify this file according to your configuration:

connection_string : postgresql+psycopg2://postgres:root@localhost:5432

take a look to SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html] for more information.

OlaPy ETL

NOTE: this part is working only with Python 3.5+.

OlaPy ETL can be used if you have an excel file (one sheet) contains all your data in order to let OlaPy make necessary transformations relative to its rules on your data.

To use OlaPy ETL, after installing OlaPy with python setup.py install use the following command:

etl --input_file_path=<EXCEL FILE PATH> --config_file=<CONFIG FILE PATH> [OPTIONAL] --output_cube_path=<PATH WHERE TO GENERATE THE CUBE>

config_file describe how to create the cube, here an example of the configuration file,
consider this excel sheet:

	Count

	Continent

	Country

	Year

	Month

	Day

	84

	America

	Canada

	2010

	January 2010

	January 1,2010

	841

	America

	Canada

	2010

	January 2010

	January 2,2010

	2

	America

	United States

	2010

	January 2010

	January 3,2010

and we want to divide it into three table, we use a configuration file like this:

Facts: [Count] # just measures
Geography: [Continent, Country]
Date: [Year, Month, Day]

and you save it as yaml file (.yml).

API Documentation

Package olapy.core.services.xmla

to import the package use:

import olapy.core.services.xmla

Package olapy.core.mdx.executor

to import the package use:

import olapy.core.mdx.executor

Package olapy.etl.etl

to import the package use:

import olapy.etl.etl

Index

 _static/comment-bright.png

_images/excel.png
Home.

e

Book! - Excel

Insert Pagelayout Formulas Q Tell me what you want t

”‘e (& Connections | Y

W Clear

Y

= Flash il

E-a Consolidate

5 [Eew -

Signin | 9, share

E\éFvomWeb i || e, [l properes 4 & O Vs Reapply . Lg»zemmuupmm 2@ Relationships e o Ungroup.
 From Text Connections | Query~ L Recent Sources |+ |2 it Links W Advanced | Columns 6 Data Valdation - (B} Manage Data Model | anabsis - Sheet | EES Subtatal
o SQL Server o it oua oo roreant outine -
Cresesconnectonto QL Sener bl mpor o ot Ecl
m Toicor bl por 3 5
) Create a connection to a SQL Server Analysis Services cube. Impol 1 K M N o 3 Q R s T
i
2 ‘From OData Data Feed
4 [g emetontsmooss b s mpa s o s
al from XML Data mport
5 [y vemrmap e L e e e
7] From Data Connection Wizard
5 [T mportdte o am o oty i th Dt Connsction Wi
e na OLiDE
| From Micosoft Query
1] [y it ot fo an unlsted foma b uing th Micrsof Cuery Wizrd
n e CDBC.Funtonlty s s o compablty i prvios e
12|
1]
il
15
16
1]
18|
19
20/
21
2 L
= -
Sheet! €} [« 1 Dl
B M -—§F——+ 100%

Ready

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 OlaPy - OLAP Engine

 		
 Installation

 		
 Install from PyPI

 		
 Install from Github

 		
 Initialization

 		
 Testing

 		
 Olapy-data

 		
 Quick Start

 		
 OlaPy as XMLA server

 		
 Olapy as a library

 		
 Advanced Olapy options

 		
 Cubes creation

 		
 OLAPY CUBES RULES

 		
 Examples:

 		
 Cube 1

 		
 Cube 2

 		
 Cube customization

 		
 Running olapy with Database

 		
 Environnement variable

 		
 Database string connection

 		
 Olapy config file

 		
 OlaPy ETL

 		
 API Documentation

 		
 Package olapy.core.services.xmla

 		
 Package olapy.core.mdx.executor

 		
 Package olapy.etl.etl

_static/up-pressed.png

_static/up.png

_static/plus.png

